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of Picosecond Electrical Pulses
Using Dispersive Microwave
Transmission Lines
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Abstract —In this paper we study the phase compensation
effect of microwave transmission line dispersion and propose a
simple, effective method for reshaping and compressing picosec-
ond electrical pulses generated from photoconductive switches.
We show that a piece of a dispersive strip transmission line can
be used as a “phase equalizer” to compensate the phase distor-
tion included in asymmetric pulses, resulting in effective reshap-
ing and compression of these ultrashort pulses. Initial design
formulas of the strip transmission lines for this purpose are
presented, together with computer simulation results which con-
firm the theoretical predictions. Finally we present experimental
results to show the substantial pulse reshaping effect, as well as
a comparison between theory and measurement.

I. INTRODUCTION

LTRAFAST electrical pulses with picosecond and

subpicosecond durations are finding steadily in-
creasing applications, such as microwave and millimeter-
wave generation, time-domain network analyzers [1], and
coherent microwave transient spectroscopy [2]. To gener-
ate these extremely short electrical pulses, high-speed
photoconductive switches are widely used, although novel
methods for generating electrical pulses with femtosecond
durations have been reported recently {3]. One of the
problems with the photoconductive switch is that the fall
time of the electrical pulses generated is strongly depen-
dent on the carrier lifetime, which is usually several
hundred picoseconds for many intrinsic photoconductive
materials. To reduce the pulse width, ion implantation
* techniques are commonly employed. The introduction of
high defect density by such techniques, however, usually
results in low mobility, poor stability, and a lack of com-
patibility with the fabrication processes of other devices
[4].

Because of the abovementioned limitations of the ion
implantation technique, there has been increasing interest
in obtaining ultrashort electrical pulses which are inde-
pendent of the carrier lifetime of photoconductive materi-
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als. In an earlier work, Li et al. studied a number of
pulse-forming devices based on the charged line concept,
but no rigorous analysis of the pulse waveform was
offered [5]. Frankel et al. reported the formation of pico-
second electrical pulses by inductive shunt and series
capacitance discontinuities embedded in a coplanar trans-
mission line [6]. Other pulse-forming methods, such as
introducing impedance mismatch into the pulse-gener-
ating structure [7] and asymmetric excitation of charged
transmission lines [8], have also been proposed recently.

In contrast to the previous pulse-forming methods,
which unexceptionally make use of transmission line dis-
continuities, we have proposed a new method of pulse
reshaping and compression using dispersive transmission
lines [9]. The dispersion of picosecond electrical pulses on
microwave transmission lines has been studied intensively
during the past few years [10]-[12], mainly from the
viewpoint of how these ultrafast signals are distorted as
they travel along the transmission lines. Positive utiliza-
tion of the dispersion properties in the transmission and
control of these ultrashort pulses, on the other hand, has
hardly been studied closely. Li et al. had noted in their
paper [10] the sharpening effect of a single-sided expo-
nential pulse traveling along microstrip lines. A rigorous
analysis of this phenomenon, however, has never been
obtained.

In this paper we investigate in detail the propagation of
such asymmetric pulses, with special attention to the
influence of dispersion on the phase distortion of the
signal pulses. It is found that microwave transmission
lines, such as microstrip lines and coplanar waveguides,
possess properties similar to those of a phase equalizer
[13] and can be used to correct the phase distortion
included in an asymmetric electrical pulse. At a certain
distance along the transmission line, the pulse becomes
almost symmetric in waveform, and its FWHM (full width
half maximum) is several times smaller than that of the
original pulse. This provides a simple and effective method
for obtaining electrical pulses with good symmetry and a
short falling edge.
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Fig. 1. Waveform of a single-sided exponential pulse.
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Fig. 2. Fourier spectrum of the single-sided exponential pulse shown
in Fig. 1.

II. THEORETICAL ANALYSIS

When a photoconductive switch is excited by ultrashort
laser pulses, an clectrical pulse with approximately the
same rise time as that of the optical pulse will be gener-
ated. The fall time of the pulse, however, is determined
primarily by the carrier lifetime, which may extend to a
few hundred picoseconds for certain photoconductive ma-
terials. As a result, the generated electrical pulse is usu-
ally of an asymmetric waveform, which can be approxi-
mately described by a Gaussian rising edge followed by an
exponentially decaying tail [6]. These asymmetric pulses
are called single-sided exponential pulses, as shown in
Fig. 1, and are the typical output pulse forms of a number
of photoconductive switches.

We begin our analysis by investigating the Fourier
spectra of these asymmetric pulses. Fig. 2 shows both
spectral amplitude and phase of the single-sided exponen-
tial pulse given in Fig. 1. It is found that the phase of the
signal, ¢, is a nonlinear function of frequency, f, which
means that there is a phase distortion existing in the
signal pulse. If we define f,, as the frequency where the

1.5
[}
o
B
R=
& 1.0k
& 1.0
<
2
é 0.5F
0
3| | 10ps Time
(a)
[V(£H)/V(0) ¢
1.0 2
N ,I
\\\ <—7
0.5f ~ / 7
~ /
S/
//x\\
0 ——-L_-— | \\l 1 1 0
—-32 —~16 0\ 16 32
F(GH?z)
- > d_
27
(b)

Fig. 3. (a) Transform limit pulse with the same spectral envelope as
that of the pulse shown in Fig. 1 and (b) its Fourier spectrum.

spectral amplitude is 10% of the peak value, we can
approximately express ¢ with the polynomial

f 2
f—o‘l—) +a,

%) +0(f*) (D)

p=a,—— +ta,

fO.I

for f < fy, If terms of higher order are negligible, the
nonlinear part, or phase distortion of ¢, can be attributed
mainly to the second- and third-order terms in the above
polynomial.

When a pulse travels along a transmission line, it will
receive a continuous phase delay. The amplitude of the
spectrum, however, will remain the same as long as the
loss and nonlinearity of the transmission line are negligi-
ble. It is interesting to see how the phase delay affects the
signal phase, ¢, and results in a change in the pulse
shape. A special case is where ¢ becomes a linear func-

_ tion of frequency, f, as shown in Fig. 3(b). By an inverse

Fourier transform we obtain in the time domain a pulse
of the type shown in Fig. 3(a). This is called a Fourier
transform limit (TL) pulse, which is the narrowest pulse
possible for a given spectral amplitude distribution.
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Fig. 4. Frequency dependence of the propagation constant, 8 /B, of

a 50 Q microstrip line (e, =12.9, A= 2 mm).

Since the TL pulse has a very narrow pulse width as
well as good symmetry, it is interesting to find a way of
obtaining such pulses by eliminating the nonlinear part in
the signal phase. We will show below that a piece of a
dispersive transmission line can be used to realize this
phase compensation, resulting in effective reshaping and
compression of pulses with asymmetric waveforms.

The dispersion characteristics of various types of trans-
mission lines, among them microstrip lines, coplanar
waveguides, and coplanar strips, have been studied in
great detail by many authors. For computer analysis, a
simple approximation formula developed by Yamashita
et al. [14] has been widely used. We rewrite the dispersion
formula here in the following general form, which is valid
for all the abovementioned types of transmission lines:

Brem
Ve, —
E__ v By BreEM 2)
B, 1+aF? By

Here F=f/frg is the normalized frequency, frg=
¢ /4hye, —1 is the cutoff frequency for the lowest order
TE mode, Byg is the propagation constant assuming the
quasi-TEM approximation, and 4 and b are constants
which depend on the type and dimensions of the trans-
mission line and can be obtained by curve-fitting the
dispersion data calculated with numerical methods. For a
50 Q) microstrip line on GaAs substrate with a thickness
h=2 mm, the propagation constant, 8/8,, within the
frequency range of our interest is shown in Fig. 4.

The phase delay of a pulse propagating along the
transmission line, i, is expressed as follows:

2wfL B

c Bg

where L is the propagation distance, and B /8, is given

by (2). Because of the frequency dependence of 8 /8, &

is also a nonlinear function of frequency. If this phase

delay can be used to correct the nonlinear part in the

signal phase, ¢, so that ¢ — ¢ becomes a linear function

of the frequency, f, we can expect to obtain a pulse which
is similar to the TL pulse shown in Fig. 3(a).

(3)

To describe the predicted phase compensation effect, it
is desirable that ¢ be expanded in a way similar to that of
(1). Since in (2) the dispersion at f =0 is not defined, we
take the Taylor series expansion at F =1 as follows:

B Brem 1 ab
AN ‘/ — -1
(E’ B {a+1+(a+1f(F )

Bo 0
ab(ab—a—b—1)
+
2(a+1)°

,8 TEM

Bo
for |F —1] < 1. Consequently,

Y =bif+byf?+byf?+0(f*)
for 0 < f <2f;g, where
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Comparing (5) with (1), we find that if the second- and
third-order terms in the two polynomials are equal to
each other, the resultant phase of the signal after propa-
gation becomes

q§—¢=(i—b1)f+0(f4)

3

(6)
0.1

which is a linear function of f when higher order terms

are neglected. Taking an inverse Fourier transform, we

can expect to obtain a pulse which is close to the TL pulse

shown in Fig. 3(a). By equating b, and b, in (5b) and (5¢)

to their corresponding coefficients in (1), we obtain the

cutoff frequency, frg, and the optimum length, Ly, of
the transmission line:
f =fol1a2[b(a_1)_(a+1)] (7a)
™ 2a5[2(a+1) - b(a—1)]
and
L = CaszE(a+1)3

opt

2mwﬁ{%§— :M[aa+n—bw—4n
0
(7b)
Once frg is known, the dimensions of the transmission
line, mainly the substrate thickness, #, can be easily

determined from the relation fip=c/4hy/e, —1. By se-
lecting the constants, a and b, the above design formulas



QIAN AND YAMASHITA: PHASE COMPENSATION AND WAVEFORM RESHAPING

can be used for a number of transmission lines, including
microstrip lines, coplanar waveguides, and coplanar
striplines [11].

III. ComPUTER SIMULATIONS

In order to confirm the pulse-reshaping and compres-
sion effects discussed in the previous section, a computer
program has been written to simulate pulse propagation
along strip transmission lines. We use an algorithm simi-
lar to that given by Li er al. [10]. The input signal, a
single-sided exponential pulse of the type shown in Fig. 1,
is expressed as follows:

_ 2
VOe 4In2(t/7y) ,

Voe—'/“'z’

t<0

V(0,t) = 50

(8)

where 7, and 7, are time constants which determine the
rise and fall times of the input pulse, respectively. A
forward Fourier transform gives the spectrum of the input
pulse, Z[V(0,¢)]. Multiplying this by the propagation
factor, e 7¥PL and taking an inverse Fourier transform
will result in V(L, ¢), the pulse waveform at a propagation
distance, L. The above procedure can be expressed as

V(L,t)=F (F[V(0,1)] e DL 9)

where & denotes the Fourier transform, and the complex
propagation constant, y(f), is given by

v(f)=a(f)+iB(f)

where a(f) and B(f) are the attenuation constant and
phase constant of the transmission line, respectively.

In analyzing the phase compensation effect in the pre-
vious section, we have neglected the frequency-dependent
attenuation of the transmission line, a(f). Since the
propagation distance of interest is usually within a few
centimeters in most of the cases considered here, this
should not become a serious problem [15]. To prove the
validity of this assumption and to compare the simulation
results with experimental data, however, we have in-
cluded the effect of propagation attenuation in the simu-
lation algorithm. The dielectric loss of a microstrip line is
given by, e.g., [16]:

€, €5(f)—1 tand
SR e o VY

(10)

(dB/m)
(11)

where A is the ‘free—space wavelength, tan é is the loss
tangent, and e.(f)=(8/B,)* is the effective dielectric
constant at frequency f. The conductor loss is calculated

as follows [16]:
h 1.25 2h
1+—(1+—ln—)]
w t

o

a,(f) =138

RS

4

32— (w,/h)’

32+(w, /h)’ (dB/m)

(12)
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where the conductor surface resistance, R,, the character-
istic impedance of the microstrip line, Z,, and the effec-
tive width of the conductor strip, w,, are given by

Ry=ymfuop (12a)
z 0 1 i 025We} (12b)
= —=———In|{—+025-"
’ Véer:(f) We h \
and
1.25¢ 2h ,
we=w+—{1+lnT} (12¢)
w

respectively. Here p is the resistivity of the strip conduc-
tor, & is the thickness of the substrate, and w and ¢ are
the width and thickness of the strip conductor, respec-
tively. Finally, the attenuation constant, a(f), when as-
suming no radiation losses, can be written as

a(f)=a(f)+a f). (13)

As an example, a single-sided exponential pulse with a
2 ps rise time and a total FWHM of 35 ps is used as the
input signal. Taking a forward FFT (fast Fourier trans-
form) we obtain the phase, ¢, as well as the amplitude,
V(f), of its spectrum as shown in Fig. 2. The coefficients
a,, a, and a5 in (1) can be derived by least-square
curve-fitting of the FFT data and are found to be —7.29,
6.96, and —3.37, respectively. Assuming a 50 Q mi-
crostrip line on GaAs substrate, we have e, =12.9,
Brem /Bo=291, a=0.94, and b=1.5 [14]. Using the
formula (7a), the cutoff frequency, f1g, is calculated to be
16.9 GHz, which corresponds to a substrate thickness of
1.3 mm. Applying formula (7b), we obtain the optirnum
length of the microstrip line: L., =11 mm. Computer
simulation results of pulse propagation along the de-
signed microstrip line are shown in Fig. 5. It is seen that
near the optimum length, L, the pulse is closest in
waveform to that of the TL pulse shown in Fig. 3(a). The
FWHM of the compressed pulse is 9 ps, which is about
four times narrower than that of the original pulse. Fur-
ther propagation along the microstrip line will again dis-
tort and broaden the pulse.

IV. EXPERIMENTS

The experimental system for studying pulse propaga-
tion is shown in Fig. 6. The optical source is a picosecond
laser pulser producing 50 ps (FWHM) pulses at a center
wavelength of 820 nm. The repetition rate of the pulse is
10 MHz and its peak power is 240 mW. This laser pulsc is
used to excite our InGaAsP switch, which has a gap
length of 5 wm. The output waveform of the photocon-
ductive switch, as shown in Fig. 7, is an asymmetric pulse
with a rise time of 60 ps and a falling edge which extends
to several hundred picoseconds. '
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Fig. 5. Computer simulation results of the propagation of a 35 ps
single-sided exponential pulse along 50 € microstrip lines on GaAs
substrate (e, = 12.9, & = 1.3 mm).
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Fig. 6. Schematic of the experimental arrangement for studying pulse

propagation.

We have designed a microstrip line to reshape this
pulse to its Fourier transform limit. Choosing ceramic
(e, = 10.3) as substrate material, we obtained according to
(7a) the cutoff frequency of the stripline, frg, as 2.68
GHz, which corresponds to a substrate thickness of 9.2
mm, and a strip width of 8.54 mm in order to maintain
the 50 Q characteristic impedance. The optimum length
of the stripline, L, is calculated to be 11 cm. To
facilitate transitions from the stripline to the SMA con-
nectors, a 1-cm-long taper is added to each end of the
stripline.

The waveform of the pulse after propagation along the
stripline is plotted in Fig. 8 (solid line). For comparison
the computer simulation result of the pulse propagation is
shown in the same figure (dashed line). It is found that
the original asymmetric pulse as shown in Fig. 7 has been
reshaped to be close to a symmetrical one. The rising
edge of the measured pulse is in excellent agreement with
that of computer simulations. The falling edge, however,
is less in accordance with the calculations, and the ampli-
tude of the pulse is also somewhat lower than predicted.
These discrepancies are mainly due to the introduction of
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Fig. 7. Output pulse waveform of the InGaAsP photoconductive
switch.
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Fig. 8. Experimental (solid line) and simulation (dashed line) results of
pulse propagation along the designed microstrip line.

tapers at the two ends of the stripline. The losses at the
discontinuities resulted in a lower pulse amplitude, and
the degradation of the falling edge was caused by signal
reflections at these discontinuities. Otherwise, the main
feature of the measured pulse is in reasonable agreement
with theoretical predictions.

V. CONCLUSIONS

The propagation of picosecond electrical pulses on
strip transmission lines has been investigated, with special
attention to the phase compensation effect of the disper-
sion properties of the transmission lines. It has been
shown that by using a piece of a carefully designed strip
transmission line, asymmetric electrical pulses can be
reformed to be close to their Fourier transform limit. This
provides a simple and effective method for reshaping and
compressing picosecond electrical pulses generated from
photoconductive switches. The pulse-reshaping and com-
pression effect has been confirmed by computer simula-
tions as well as experiments, both of which are in reason-
able agreement with theoretical analysis.
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